• @GamingChairModel@lemmy.world
    link
    fedilink
    English
    027 days ago

    Meanwhile, you’ve got companies in Taiwan, Korea, China, and Japan breaking into the 3nm and 2nm scales.

    The mainland Chinese SMIC is doing everything they can without access to ASML’s EUV machines, and have gotten further than anyone else has on DUV. It remains to be seen just how far they can get without plateauing on the limits of that tech. Most doubted that they could get past 10nm, but some of their recent chips appear to be comparable to 7nm, and there are rumors that they have a low yield 5nm process that isn’t economically feasible but can be a strong political statement.

    TSMC is delaying the transition to Gate All Around, announcing that they won’t be trying it on the 3nm processes, and waiting until 2nm to roll that out. They’re the undisputed leader today, so they’re milking their current finFET advantage for as long as it will sustain them.

    Samsung has already switched to Gate All Around for their 3nm process, so they might get the jump on everyone else (even if they struggled with the previous paradigm of finFET). But they’re not lining up external customers, as their yields still can’t compete with TSMC’s. It’s entirely possible though that as the industry moves from finFETs to GAAFETs, Samsung could take a lead.

    Intel basically couldn’t get finFETs to work, and are already trying to skip ahead to GAAFETs (which they call RibbonFET). Plus Intel (like the others) is trying to introduce backside power delivery, which, if it can be commercialized and mass produced, would achieve huge gains in power efficiency. Intel did introduce both technologies in its 20A process (supposedly 2nm class), but then canceled it due to low yield. So they’re basically betting the company on their 18A process, and hoping they can get that to market before TSMC and Samsung hit their stride on 2nm.

    • @UnderpantsWeevil@lemmy.world
      link
      fedilink
      English
      -127 days ago

      The mainland Chinese SMIC is doing everything they can without access to ASML’s EUV machines, and have gotten further than anyone else has on DUV.

      You can’t say that, though, because it implies Chinese engineers and information technology scientists are trailblazers rather than plagarists and IP thieves.

      Intel did introduce both technologies in its 20A process (supposedly 2nm class), but then canceled it due to low yield. So they’re basically betting the company on their 18A process, and hoping they can get that to market before TSMC and Samsung hit their stride on 2nm.

      And I’ve got a few shares in my retirement account riding on that success. But its more a hedge against my own cynicism than a sincere expectation. Intel, like Boeing, seems far more interested in rewarding investors in the short term than maintaining a foothold in the market long term.